DETERMINAN MATRIKS
DETERMINAN MATRIKS
Mengenal Determinan Matriks
Dalam bidang aljabar linear, determinan adalah nilai yang dapat dihitung dari unsur suatu matriks persegi. Determinan matriks A ditulis dengan tanda det(A), det A, atau |A|. Determinan dapat dianggap sebagai faktor penskalaan transformasi yang digambarkan oleh matriks.
Apabila matriksnya berbentuk 2 × 2, rumus untuk mencari determinan adalah:
Apabila matriksnya berbentuk 3 × 3 matrix A, rumusnya adalah:
Rumus Leibniz untuk mencari determinan matriks n × n adalah:
Metode eliminasi Gauss juga dapat dipakai. Sebagai contoh, determinan matriks berikut:
dapat dihitung dengan menggunakan matriks berikut:
Di sini, B diperoleh dari A dengan menambahkan −1/2× baris pertama dengan baris kedua, sehingga det(A) = det(B). C diperoleh dari B dengan menambahkan kolom pertama dengan kolom ketiga, sehingga det(C) = det(B). Sementara itu, D didapat dari C dengan menukar kolom kedua dan ketiga, sehingga det(D) = −det(C). Determinan matriks segitiga D merupakan hasil dari perkalian diagonal utamanya: (−2) · 2 · 4.5 = −18. Maka dari itu, det(A) = −det(D) = +18.
Determinan Matriks Ordo 2 x 2
Seperti yang sobat idschool sudah ketahui, matriks ordo 2 dinyatakan dalam bentuk matriks dengan jumlah kolom dan baris sama dengan dua. Nilai determinan A disimbolkan dengan | A |, cara menghitung nilai determinan A dapat dilihat seperti pada cara di bawah.
determinan matriks A
Soal: Tentukan nilai determinan matriks berikut.
\[ A \; = \; \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} \]
Pembahasan:
determinan matriks A:
| A | = ad – bc
= 3 × 5 – 1 × 2
= 15 – 2
= 13
Determinan Matriks Ordo 3 x 3
Matriks Ordo 3 adalah matriks persegi dengan banyaknya kolom dan baris sama dengan tiga. Misalnya pada matriks A, elemen-elemen pada baris pertama adalah a b c, baris kedua adalah d e f, dan baris ketiga adalah g h i. Cara menghitung determinan pada matriks dengan ordo tiga biasa disebut dengan Aturan Sarrus
Invers Matriks
Simbol matriks dinyatakan dengan tanda pangkat negatif 1 (–1). Invers matriks dapat diartikan sebagai kebalikan dari suatu matriks tertentu. Jika suatu matriks bujur sangkar A dikalikan terhadap inversnya yaitu matriks bujur sangkar A–1 maka menghasilkan matriks I (matriks identitas pada operasi perkalian matriks). Cara mencari invers matriks untuk ordo 2 x 2 dan invers matriks ordo 3 x 3 diberikan seperti berikut.
Invers Matriks Ordo 2 x 2
Invers dari suatu matriks A dengan ukuran 2 x 2, elemen pada baris pertama adalah a, b dan elemen pada baris kedua adalah c, d.
SC :
https://idschool.net/sma/cara-menentukan-invers-determinan-matriks-dan-sifat-sifatnya/
Komentar